Comments on the Geometry of CH₂

W. A. YERANOS

The New England Institute, Ridgefield, Connecticut (Z. Naturforsch. 26 a, 1245 [1971]; received 5 May 1971)

Although the vast majority of the theoretical determinations $^{1-10}$ of the geometry of the ground state of CH_2 had favored a bent structure 11 , it is only very recently that the controversy about its nonlinearity has ended 12 .

Prompted by Wasserman's E.S.R. results ¹³, Herz-Berg, upon reexamination of the UV spectrum of CH₂, has recently proposed ¹² that an *alternate* interpretation of the observed data suggests that the latter be bent with a CH equilibrium distance of 1.078 Å and an HCH angle of 136°, in contradistinction to his earlie values of 1.029 Å and 180°.

We, in this laboratory, have considered the geometry of this radical within the framework of the modified extended Hückel approximation, the methodology of which is given, in detail, elsewhere ¹⁴ and shall not be repeated here.

Figure 1 gives the angular dependence of the modified extended Hückel energy $(E_{\rm MEH})$ of CH₂ as a function of the internuclear distance. Our results indicate that $r_0({\rm CH}) \cong 1.10~{\rm \AA}$ and $\prec {\rm HCH} \cong 135.8^\circ$ with an approximate potential barrier of 1.4 kcal/mole. It is indeed interesting to note that at the earlier reported internuclear distance of 1.029 ${\rm \AA}$ our calculations suggest a linear structure.

Perhaps, the most important outcome of the present study, however, was the fact that in the case of CH₂ not only does the modified extended Hückel approximation seem to be superior to the regular one, a doctored version ⁷ of which gives a shallow minimum at 155°, but that it also compares favorably well with the most elaborate of *ab initio* calculations (s. Table 1). It is indeed extremely gratifying to find that our simple methodology gives as good results as the most sophisticated and "high-accuracy" calculations of Ben-

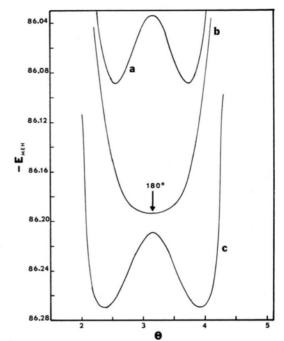


Fig. 1. Angular * dependence of $E_{\rm MEH}$ ** (CH₂) as a function of $r({\rm CH})$.

- * Θ(in radians) represents the HCH angle. E_{MEH} is given in eV.
 ** E_{MEH} does not include the constant contribution of the electron in the out-of-plane 2pz orbital of carbon.
- [†] The internuclear distances considered are (a) 1.18 Å; (b) 1.029 Å and (c) 1.10 Å.

DER and SCHAEFER ⁹ whose "wave functions were of the configuration-interaction variety, including the SCF function plus all singly and doubly excited configurations arising from a 'double-ξ' gaussian basis set", and which, all in all, included 408 ³B₁ configurations!

Although similar accuracy cannot be expected for all the hydrocarbons, it is perhaps, not very difficult to see why our methodology ^{14, 15} seems promising for the practicing organic chemist.

Author(s)	Type of Calculation or experiment	$r_{\min}(\mathrm{CH})$	< CHC	Table 1. Theoretical and experimental geometric parameters of methylene.
HARRISON and ALLEN ⁸ BENDER and SCHAEFER III ⁹ LATHAN, HEHRE and POPLE ¹⁰ This work Experimental ¹²	Ab initio Valence Bond Ab initio M.O. Ab initio M.O. (4-31 G) Semi-empirical M.O. UV Spectroscopy	1.058 Å 1.096 1.069 1.10 1.078 *	138° 135.1 132.0 135.8 136	* This value is actually for r_0 (CH).

- ¹ K. Niira and K. Ookata, J. Phys. Soc. Japan 7, 61 [1952].
- ² J. M. Foster and S. F. Boys, Rev. Mod. Phys. 26, 716 [1957]
- A. Padgett and M. Krauss, J. Chem. Phys. 32, 189 [1960].
 P. C. H. Jordan and H. C. Longuet-Higgens, Mol. Phys.
- 5, 121 [1962].

 F. O. ELLISON, J. Chem. Phys. 36, 3107 [1962].
- ⁶ R. N. Dixon, Mol. Phys. 8, 201 [1964].
- ⁷ R. HOFFMANN, G. D. ZEISS, and G. W. VAN DINE, J. Amer. Chem. Soc. **90**, 1485 [1968].
- 8 J. F. HARRISON and L. C. ALLEN, J. Amer. Chem. Soc. 91, 807 [1969].
- ⁹ C. F. BENDER and H. F. SCHAEFER III, J. Amer. Chem. Soc. **92**, 4984 [1970].
- ¹⁰ W. A. LATHAN, W. J. HEHRE, and J. A. POPLE, J. Amer. Chem. Soc. **93**, 808 [1971].
- 11 The calculated values of the HCH angle range from 120° to 180°.
- ¹² G. HERZBERG and J. W. C. JONES, J. Chem. Phys. **54**, 2276 [1971].
- ¹³ E. Wasserman, V. J. Kuck, R. S. Hutton, and W. A. Yager, J. Amer. Chem. Soc. **92**, 7491 [1970].
- ¹⁴ W. A. YERANOS, Z. Naturforsch. 25 a, 1937 [1970].
- 15 W. A. YERANOS, Z. Naturforsch. (in press).